IMPACT: International Journal of Research in -

Engineering & Technology (IMPACT: IJRET) — o — -
ISSN(E): 2321-8843; ISSN(P): 2347-4599 U Do C L
Vol. 2, Issue 6, Jun 2014, 175-180 . = .

© Impact Journals

STATE-OF-THE ART DIFFERENCES BETWEEN TRADITIONAL SO FTWARE
ENGINEERING (TSE) AND SERVICE-ORIENTED SOFTWARE ENG INEERING (SOSE)

MUSA M. AHMED
Department of Science Education, Modibbo Adama sty of Technology, Yola, Nigeria

ABSTRACT

To gain insight into the challenges of SOSE issaegod understanding of its features is imperativis paper
reports a systematic study of the difference betwie Traditional Software Engineering, TSE, andvise-Oriented
Software Engineering, SOSE. While TSE follows thBLE formally, SOSE uses services as building blocks
In TSE, group of programmers work together throtiphsign-Development-Testing” circles, SOSE’s rofes divided
into service consumer, service broker and serviogiger and employs “Discovery-Decomposition-Evéiloi&’ circles.
Services are dynamically discovered and compos&DSE whereas requirements are set at the begianihglelivered
at the end of the project in the case of TSE. Sefesuch differences are identified in tabular fatrand followed by

some recommendations.

KEYWORDS: Differences, Service-Oriented Software EngineeriSpftware Engineering, Traditional Software

Engineering
INTRODUCTION

The inspiration of software development methodaegis engineering discipline such as civil or medts
engineering, such disciplines put a lot of emphasiplanning before you build. Such engineers wirk on a series of
drawings that precisely indicate what needs to bt bnd how these things need to be put togethlmy design
decisions, such as how to deal with load on a leralg made as the drawings are produced. The dys\ane then handed
over to a different group, often a different compam be built. It's assumed that the constructioocpsses will follow the
drawings. In practice, the constructor will runorgome problems but these are usually small. Smee@rawings specify
the pieces and how they need to be put togethey, aht as the foundation for a detailed constracfitan. Such plans
figure out the tasks that need to be done and dieperes exist between these tasks. This allowsafoeasonable
predictable schedule and budget for constructipalsb says in detail how the people doing the wooson work should
do their work. This allows the construction to ked skilled intellectually, although they are oftemy skilled manually,
(Fowler, 2000)

There are two fundamentally different activitieseimgineering processes. Design which is difficalptedict and
requires expensive and creative people, and catigtnuwhich is easier to predict. Once we havegtesive can deal with
the construction in a much more predictable wayer&fore, we need to figure out how the design édtwsare so that the
construction can be straight forward. In softwangieeering, Different stakeholders in the developimgrocess must
assume different roles. As such, the developmestgss can benefit from a separation of concernsattiaowledges the

difference between the two key activities softwangineers perform in Software development. Duriogceptualization

| Impact Factor(JCC): 1.5548 - This article can be denloaded from www.impactjournals.us |

| 176 Musa M. Ahmed |

and analysis, software engineers elicit requiremért clarify the business needs. Design, devedopnand testing is an
iterative set of phases in traditional softwareieegring while Service software engineers discoevices, decomposes
and evaluate software. Service-centric system-nemnagt life cycle is modular. You can split it intloree aggregate
phases: Business-process management, design-tfmasengineering, and runtime software enginggramd different

stakeholders can manage these aggregate phasks, (Bla7).

Most SOSE methodologies have been proposed indm#tlemia and industry aiming at providing approsche
methods and tools for researchers and practitiot@rengineer SBAs. However, without being fully emstood,
a methodology is less valuable no matter how peifés. This is particularly relevant to SOSE nmdblogies as they are
more complex than TSE ones, having to deal with nballenges while keeping the principles of TSEth\the aim of
understanding SOSE features, this paper presetabuar format the difference between SOSE and. TSE

Traditional Software Engineering, An Overview

As a results of the new paradigm for software dgwelent gain favor at the NATO conference in 1968,
(Randel, 1968). It considered software developrasra form of engineering. The hope is that if safendevelopment can
develop as an engineering discipline then it wdaddgossible to develop complex and large softwaxeldpment projects
on-time, on-budget, with fewer bugs and to meett(ifoeot all) of the requirements, (Aitken and Igo) 2013).
Engineering is generally thought of as processasufing knowledge to achieve objectives, usuallybimlding
(or at least designing) complex systems or strestuEngineers puts a great deal of effort into iptied) and planning
their work and generally work with fixed requirentgnthat is, they know what they are supposed ttd bat the

commencement of the projects.

Software Engineering according to Wikipedia (20#4he establishment and use of sound engineeringiples
in order to economically obtain software that iatde and work efficiently on real machines. Imet words, software
should be maintainable, dependable and acceptbivare engineering is the application of a systerand disciplined
approach to the development, testing and maintenaha program, (Wu, 2004). Software engineerirgsents a broad

perspective on software systems engineering, coratgry on widely used techniques for developingéascale systems.

Software Engineering may be defined as the systerdasign and development of software products thed
management of the software process (Mills, 198@ftware Engineering has as one of its primary dbjes the
production of programmes that meet specificatiamsl are demonstrably accurate, produced on timeadéthth budget.
Software Engineering is the branch of system emging concerned with the development of large amdpiex software

intensive system (Finkelstein and Kramer, 2000fpdtises on:
» Areal-world goals for services provided by andstomints on such systems;
» The precise specification of system structure agtthiior, and the implementation of these specifioat

» The activities required in order to develop an emste that the specifications and real-world gbalge been
met;

* The evolution of such systems over time and asgstem families.

* ltis also concerned with the:

Index Copernicus Value: 3.0 - Articles can be sertb editor@impactjournals.us

State-of-the Art Differences between Traditional Sfiware Engineering (TSE) 177
and Service-Oriented Software Engineering (SOSE)

* Process
e Method
e Tools

For development of software intensive systems ia@nomics and timely manner.
Service-Oriented Software Engineering, An Overview

Service-Oriented software Engineering is a softwangineering methodology focused on the developmwien
software systems by composition of reusable sesviden provided by other service providers, treepsal elements is
the dynamic nature of the connection between theicge users to the service providers to provideeading edge
IT solution. Service engineering generalizes theeti;pment of so-called valued-added services, rididitional services
bridging the gap between technology and the endkmsavn from telecommunication and reactive systarRecently, the
trend in software development has shifted from tgpirg software systems to developing service-de@rsystems that
are composed of ready to use services. The seovierted architecture (SOA) architectural style besn widely adopted
in industries thanks to its ability to providingaseless integration among software services (E0520f the services are
well-specified, loosely coupled, and coherent, Enpénting a SOA can bring many benefits to an ensgrpincluding:

reduced IT costs, and increased organizationatya¢firl, 2005).

This new paradigm computing utilizes services fas lbasic construct to support the development pidra
low-cost and easy composition of distributed agians even in heterogeneous environments. Thendsy promise of
service-oriented computing is a world of coopexatiervices where application components are assemkith little
effort into a network of services that can be Idps®mupled to create flexible dynamic business psses and agile
applications that may span organizations and comgpuplatforms, (Papazolou, et al, 2003). The subjet
service-oriented computing is vast and enormousimpiex, spanning many concepts and technology fthdt their
origins in diverse disciplines that are woven tbgetin an intricate need to merge technology witldesstanding of
business processes and organizational structupgsnhination of recognizing an enterprise’s paimsoand the potential
solutions that can be applied to correct them. adhiéity to layer solutions and support heteroggnaltows for gradual

migration to service-based solutions.
The relevant key concepts in SOSE (Munro et alp2@@&clude but not limited to the following:
» Anopen market place for services,
« Dynamic provision of software in response to chaggequests,
* The potential for one-time execution followed byinding,
» Aservices supply network where service provideay subcontract to provide their services,
» Delivery transparency to software users, whoseéstdies in its use.

The term service-oriented software has now beetieappo the older technologies of DCOM and CORBA,

More recently to J2EE and .NET deployments andafge to Web services. There’s no reason why titetdogy has to

Impact Factor(JCC): 1.5548 - This article can be denloaded from www.impactjournals.us

| 178 Musa M. Ahmed |

be a discriminating feature in SOA. Standards silcBOAP for web services help to ensure that tggerity of solutions

poses no problems (Munro et al, 2000).
Traditional Software Engineering verses Service-Ognted Software Engineering

Below are the Differences between Traditional SafsMEngineering and Service-Oriented Software Eaging

Table 1

S/No Traditional Software Engineering Service-Oriented Software Engineering
1. Process and tools driven Services are the bgilbiocks
Open services driven, architecture of service-oeign

Does not well-come changing requirements

2. dUring Droiects proaress system can be changed or even determined at rensiime
9 proj prog service are the building blocks.

Additional development roles are involved in deypei@nt;

3. Follow the phases of SDLC formally, these roles are rather split into three esserttiabr Service

encourages formal analysis and planning. . X :
9 y b 9 consumer, Service provider and Service broker.

All requirements decided in the requirements | Services are engineered with multiple sets of requents
4. | gathering phases should be delivered by the firtal fulfill different groups of potentials consumenrgh

software built. different quality requirements.
5 Documents driven, every activity is measured|Hdy provides software solutions dynamically in resge to
" | intensive documentation or deliverances. changing requests.
6 Software engineering life-cycles involves Service-Oriented Software engineering life-cycltamlves
" | “Design-Development-Testing” repetitions. “Discovery-Decomposition-Evaluation” repetitions.
7 Requirements are set at the beginning and Requirements are dynamically generated; as suaigelsa
" | delivered at the end of the Project. can easily be made and composed.

CONCLUSIONS

One of the major advantages of SOSE is the easmking changes; the flexibility that gives this eqgrh the
potential to ease the evolution problem creates difficulties in software understanding. The maontibution of this
paper come from an overview of both the TSE andES@&ng recognized in the research community aei tifferences
classified in tabular format. In contrast to TSEBLC formality, SOSE methodology uses servicegsabuilding blocks,
and development roles are categories into three/ic®econsumer, service broker and service prosidsub-provider).
To improve the understandability of SOSE methodgplag number of its service life cycles are compandith that of
TSE and the differences are highlighted.

RECOMMENDATION
» Service providers should develop user-friendly mewthat are easily discoverable and understaadabl

e Managing trust within the automated procurementgss of SOSE will be more difficult, however, autted
methods for negotiating such non numerical and miaréented concepts will require further researetiole

they are sufficiently mature to be incorporated ieveryday business practices.

* A legal framework within which to form contracts @other major challenge for an automated and globa

solution, setting a legal framework within whichféesm contracts is crucial.
REFERENCES

1. Finkelstein and J. Kramer (2000), “Software Engiiteg A Road map” in “the future of software Engéming”.
ACM press.

Index Copernicus Value: 3.0 - Articles can be sertb editor@impactjournals.us

State-of-the Art Differences between Traditional Sfiware Engineering (TSE) 179
and Service-Oriented Software Engineering (SOSE)

2.

10.

Aitken, A. and llango, V. (2013), A comparative Aysis of traditional Software engineering and Adieftware

Engineering.

T. Wu (2004), An introduction to object-orientedbogramming with java, updated third edition. Mc Graiy
Higher Education.

H. D. Mills (1980), The management of Software HEwegiring; Part I: Principles of Software Engineering
IBM systems journal vol 19 issue 4 pg 414-420

M. B. Blake (2007), Decomposing Composition: Seev@riented Software Engineers. IEEE Computer Spciet
Vol. 24 No 6

M. Fowler (2000), The New Methodologyww.martinfowler.com/articles/newmethodologyoridithéml

M. P. Papazolou, P. Traverso, S. Dustdar and Fmiaey (2003), service —oriented computing. Commutioica
of the ACM VOL 46 Pg 25-2.

N. Gold, A. Mohan, C. Knight and M. Munro (2000), ndlerstanding Service-oriented Software.

www.computer.org/publications/dlib

Nano, P. and Raindell, B. (1968), Software EngimgeReport of a conference sponsored by the NATi@nse
committee (2-11 Oct. 1968). Brussels, scientififafé Division, NATO.

T. Erl(2005), Service-oriented architecture: cornsgpechnology and design. Prentice Hall Wikipe(ial14),

Software Engineering. Wikimedia Foundation Ihttp://en.wikipedia.org/wiki/softwareengineering

Impact Factor(JCC): 1.5548 - This article can be denloaded from www.impactjournals.us

